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The copper chalcogenide family consists of a relatively large
number of binary and ternary members which belong to two
general categories, those which are valence-precise and thos
which are mixed-valent. The mixed-valent compounds have
been of particular interest and subject to numerous synthetic,
physical, and theoretical investigations because they exhibit
interesting properties, such as metallic conductivity, supercon-
ductivity,! and charge-density wavésExamples include CuQ
(Q=S, Se) CuS,* CuTe? NasCwSs,6 ACusQz (A = K, Rb,

Cs; Q= S, Se), AsCuQs (A = K, Rb, Cs; Q= S, Sef Cs-
CusSe,® KoCusTes, 0 and ACusTero (A = Rb, Cs)!! In a few
instances, the mixed-valency coexists with the presence of
chalcogen-chalcogen bonds as, for example, in CuQ=Cs,

Se), Cug, K.CusTes, and ACugTeyp. CusS is distinguished
among the binary (1:1) metal sulfides because of its unique
structure, which contains both monosulfides and disulfides, and
its mixed-valency. The latter is thought to be mostly associated
with partial oxidation of sulfide rather than the €& couple.
This occurs because the energies of the” @d orbitals lie
slightly lower relative to those of the sulfide 3p orbitals. The
related valence-precise ternary compounds are semiconductor
such as NaGi$;,'2 ACuQ (A = Na, K; Q = S, Se, Te}?
ACuzQ: (A = Na, K)*and KsCugTe;1.1% In this communica-
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tion, we report the synthesis, structure, and properties of a new
simple mixed-valent ternary copper phase, Ngguwith a
novel two-dimensional structure related to that of CusS.

NaCuwS, was synthesized from a mixed Na/Ba/S flux, which
was initially intended to stabilize quaternary Na/Ba/Cu/S
compounds. So far, we have not been able to synthesize it from
reactions of Cu witmNaS, (n = 1-3, x = 7—2.33) fluxes,
which generate only the known CuS. The structure of N&&zu
is a new two-dimensional Cu/S framework of trigonal symmetry
(see Figure 138 Anionic [Cw(S)(S)]~ layers, which contain
both $?~ and $-, alternate with charge-compensating™Nans.

The structure of the [CiS,)(S),]~ slab is composed of a G&
layer of anti-GasS structure type, sandwiched between two BN-
type CuS layers. The connections are made via-E€ilonds
involving metal atoms from the anti-GasS type layer and sulfur
atoms from the BN-type layers. The BN-type layers become
slightly puckered, and the deviation from planarity is attributed
to both ionic N&—S?~ interactions and N&a--Cu' repulsions.
This results in four-coordinated monosulfide atoms with an
Binusual inverted (umbrella) tetrahedral geometry. The structure
of NaCuS;, is akin to that of CusS itself, in that in the binary
solid, the anti-GaS type G8, layers alternate with the BN-
type CusS layers, forming an infinite stack along thaxis. In
NaCuS,, every other anti-GaS layer is missing and is replaced
by a layer of Na atoms. There are two crystallographically
independent Cu atoms in the structure: (a) Cu(l) is tetrahedrally
coordinated by one S@&)and three S(2¥~ and (b) the three-
coordinated Cu(2) lies slightly above a trigonal planar environ-
ment of three S(2y ions. The Na-S distance is normal, at
2.927(4) A. The S(23S(2) distance is slightly longer than a
typical S-S single bond in $-, at 2.09(1) A, but shorter than
the 2.15 A found in Cus.

The formal oxidation states of Nag®4 do not balance unless
we invoke mixed-valency. If all monosulfides and disulfides
are considered as—2 then the charges on the metal reduce to
Na(Cu"),(CL#H)(S)S,. If, however, the metals are to be taken

as I, then either &/~ or %7/~ mixed-valency is required,

which should manifest itself as holes in the sulfur-based valence
band. This situation is similar to that in CuS, where the formal
charge of Cu is + and the average charge of S is.% In
Cus, the electron deficiency (holes) in S is patrtially relieved
by formation of S-S bonds (for two-thirds of the S atoms) and
partially delocalized through the S p-band to give the formalism
of (CuM)3(S27)(S) or (CuM)3(S7)(S*). Thus, CusS displays
ideal metallic behavior. In NaG8,, the [CuS] framework has

a 0.25- net charge, and the average charge of S is further
reduced to 1.25, still short of 2- for a filled $~ p-band. The
addition of extra electrons in the sulfur bands of [CuS] does
not generate a valence-precise electronic structure. Instead, it
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Figure 1. ORTEP representation and labeling scheme of (A) the packing diagram of,Saénd (B) one [CuSs]~ layer viewed down the
c—axis. Selected bond distances [A] and angles [deg]: Ct%1}), 2.335(6); Cu(BS(2), 2.332(3); Cu(2}S(1), 2.242(2); S(2}S(2), 2.09(1);
S(1)}-Na, 2.927(4); Cu(2yNa, 3.180(3); S(:yCu(1)-S(2), 108.5(1); S(2yCu(1)}-S(2), 110.4(1), S(£)Cu(2)-S(1), 117.36(9); Cu(hS(1)-
Cu(2), 80.5(2); Cu(2yS(1)-Cu(2), 117.36(9); Cu(})S(2)-Cu(1), 110.4(1).

their diverse structures. Although one might speculate on the
existence of a CDW instability, there has been no experimental
evidence that these metallic, low-dimensional solids are subject
%@% to oneb In a recent theoretical study, it was predicted that
® reduction of KCusTes (which has one hole in the conduction
3 i ey band) by one electron would not yield a semiconductor; instead,
@2&% a structural distortion is anticipated for it to remain metalfic.
of® It appears that reduction of [CuQ] frameworks always reduces
o & dichalcogenide groups to monochalcogenides before filling the
& holes in the conduction bands to generate semiconductors. Only
the completely reduced [CuQ]lframeworks, such as KCusS,
5&&“"@@ ACuQ!® and a-/3-BaCuypS,,1° are semiconductors.
i Considering the abundance of compounds in the ternary alkali
[W Cu chalcogenide system, it is remarkable that a new structure
ol e type, a new electronic structure of [C4%}, and a new
0 50 100 150 200 composition of A/Cu/Q has been found. Among the plethora
of AICu/Q phases, the metallic Nag34 is a noteworthy member

) ) - ) because of the simplicity of its structure and its close relationship
Figure 2. Four-probe electrical resistivity data as a function of {5 the parent CusS.

temperature for a single crystal of NafSu
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